## Análise de Informação Económica e Empresarial

Aula 7: Redução de Dados: Medidas de Dispersão e Concentração







# Aula 7: Redução de Dados: Medidas de Dispersão e Concentração

#### Sumário



#### **Conceitos Fundamentais**

- Dispersão
- Intervalo de Variação (Amplitude Total) e Intervalo de Variação Interquartil (Q3-Q1)
- Dispersão Absoluta: Desvio Absoluto Médio, Desvio Padrão e Variância
- Dispersão Relativa: Coeficiente de Variação
- Concentração
- Coeficiente de Gini e Curva de Lorenz
- Diagrama de extremos e quartis ou Gráfico caixa e bigodes

#### **Tópicos**

- 1. Medidas de Dispersão e de Concentração
- 2. Intervalo de Variação (Amplitude Total) e Intervalo de Variação Interquartil (Q3-Q1)
- 3. Dispersão Absoluta: Desvio Absoluto Médio, Desvio Padrão e Variância
- 4. Dispersão Relativa: Coeficiente de Variação
- Coeficiente de Gini
- Curva de Lorenz

**Exercício de consolidação:** Utilizar a base de dados de notas e calcular média aritmética, máximo, mínimo, 3º quartil, 1º quartil, amplitude total, intervalo de variação interquartil, desvio absoluto médio, desvio padrão, variância e coeficiente de variação

Exercício de aplicação: exercício de aplicação de medidas de concentração.

**Bibliografia:** Reis, Elizabeth (2005) Estatística Descritiva, Lisboa: Edições Sílabo, 6ª edição - Cap 5. Medidas de Dispersão e Concentração, pp 97-117



Temos os dados:

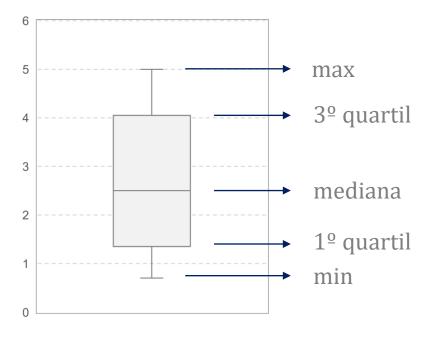
$$X_1, X_2, X_3, \dots, X_n$$

- Calculámos valores que representavam toda a distribuição as medidas de localização...
- Até que ponto as medidas de localização calculadas são uma boa representação dos dados? Quão distintos são os elementos da população?
- Necessitamos de uma medida da heterogeneidade dos valores!
- Medidas de dispersão: indicadores da heterogeneidade
  - As medidas de dispersão absolutas na unidade da variável
    - Amplitude total e amplitude interquartil
    - Desvio absoluto médio, desvio padrão e variância
  - As medidas de dispersão relativas
    - Intervalo interquartil relativo
    - Coeficiente de variação



- Medidas de dispersão com base em medidas de posição
  - Amplitude total ou Intervalo de variação

$$R_x = \max(X_i) - \min(X_i) = X_{max} - X_{min}$$


- Características do intervalo de variação
  - Facilidade de cálculo
  - Muito sensível aos valores extremos
  - Não tem em conta valores intermédios
  - Sensibilidade à dimensão da população ou da amostra
- Amplitude Interquartis ou Intervalo de variação interquartil

$$IQ = Q_3 - Q_1$$

- Características do intervalo de variação interquartil
  - Menor sensibilidade aos valores extremos
  - Não toma em consideração todos os valores da coleção



Diagrama de extremos e quartis
Avaliação da localização e dispersão <u>a partir de medidas de posição</u>





Medidas de dispersão com base em todas as observações Medir o afastamento entre todas as observações

- Desvio absoluto médio
  - Dados não agrupados:

$$DM_{\chi} = \frac{\sum_{i=1}^{n} |x_i - \bar{x}|}{n} = \frac{\sum_{i=1}^{n} |x_i - \mu|}{n}$$

• Dados agrupados/classificados:

$$DM_{x} = \frac{\sum_{i=1}^{n} n_{i} |v_{i} - \bar{x}|}{n} = \sum_{i=1}^{n} f_{i} |v_{i} - \bar{x}|$$

(ou  $C_i$  em vez  $v_i$ )



#### Medidas de dispersão com base em todas as observações Medem o afastamento entre todas as observações.

#### Desvio-Padrão

Dados não agrupados:

$$S_{\chi} = \sigma_{\chi} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}}$$

Dados agrupados/classificados:

$$s_{x} = \sigma_{x} = \sqrt{\frac{\sum_{i=1}^{n} n_{i}(v_{i} - \bar{x})^{2}}{n}} = \sqrt{\sum_{i=1}^{n} f_{i}(v_{i} - \bar{x})^{2}}$$

#### Variância

Dados não agrupados:

$$s_{x}^{2} = \sigma_{x}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n}$$

• Dados agrupados/classificados:

$$s_{\chi}^{2} = \sigma_{\chi}^{2} = \frac{\sum_{i=1}^{n} n_{i} (v_{i} - \bar{x})^{2}}{n} = \sum_{i=1}^{n} f_{i} (v_{i} - \bar{x})^{2}$$



#### Medidas de dispersão relativa

Permitem comparar distribuições com medidas de localização distintas.

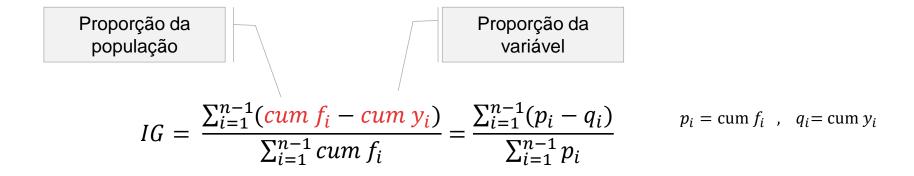
Intervalo interquartil relativo

$$IQR = \frac{Q_3 - Q_1}{Q_2}$$

Coeficiente de variação

$$CV_{x} = \frac{s_{x}}{\bar{x}} = \frac{\sigma_{x}}{\mu}$$

## Medidas de concentração




#### Medidas de concentração

Como se reparte, entre os elementos da população, o valor total de uma característica ordenável e somável (ex: vendas, rendimento, etc.)

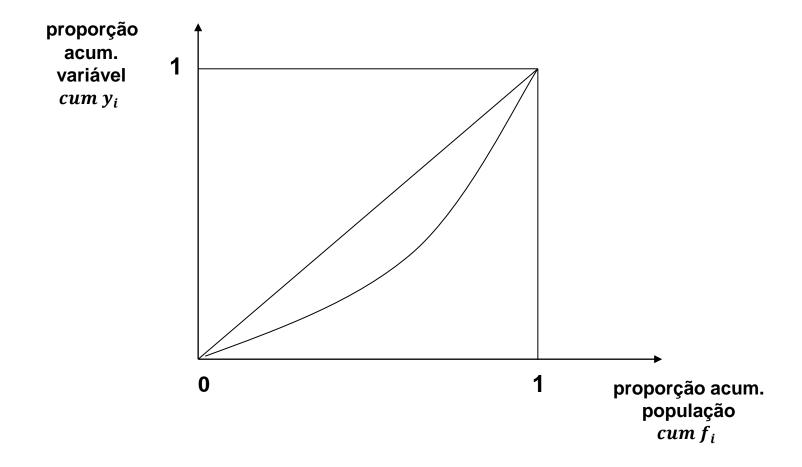
#### Ideia:

- 1. Avaliar qual a proporção dessa característica que cada elemento da população detém.
- Temos elevada concentração se poucos elementos da população detiverem uma elevada proporção do total.
- Índice de Gini uma forma de medir a concentração



## Medidas de Concentração




#### Exemplo: rendimento de 8 trabalhadores

| Rendimento $(Y_i)$ | $\boldsymbol{F_i}$ | Rendimento<br>Acumulado<br>(cum <i>Y<sub>i</sub></i> ) | População<br>Acumulada<br>(cum <b>F</b> <sub>i</sub> ) | $\%$ de rendimento (cum $y_i$ ) | % de<br>população<br>(cum $f_i$ ) |
|--------------------|--------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------|-----------------------------------|
| 120                | 1                  | 120                                                    | 1                                                      | 0,060                           | 0,125                             |
| 150                | 1                  | 270                                                    | 2                                                      | 0,135                           | 0,250                             |
| 180                | 1                  | 450                                                    | 3                                                      | 0,225                           | 0,375                             |
| 200                | 1                  | 650                                                    | 4                                                      | 0,325                           | 0,500                             |
| 250                | 1                  | 900                                                    | 5                                                      | 0,450                           | 0,625                             |
| 260                | 1                  | 1160                                                   | 6                                                      | 0,580                           | 0,750                             |
| 300                | 1                  | 1460                                                   | 7                                                      | 0,730                           | 0,875                             |
| 540                | 1                  | 2000                                                   | 8                                                      | 1,000                           | 1,000                             |
| 2000               | 8                  |                                                        |                                                        |                                 |                                   |

## Medidas de Concentração



Representação gráfica: a curva de Lorenz

